A comparative study of wavelet families for EEG signal classification
نویسندگان
چکیده
Over the past two decades, wavelet theory has been used for the processing of biomedical signals for feature extraction, compression and de-noising applications. However the question as to which wavelet family is the most suitable for analysis of non-stationary bio-signals is still prevalent among researchers. This paper attempts to find the most useful wavelet function among the existing members study belong to both normal as well as abnormal signals like epileptic EEG. Important features such as energy, entropy and standard deviation at different sub-bands were computed using the wavelet functions—Haar, Daubechies (orders 2–10), Coiflets (orders 1–10), and Biorthogonal (orders 1.1, 2.4, 3.5, and 4.4). Feature vectors were used to model and train the Probabilistic Neural Network (PNN) and the classification accuracies were evaluated for each case. The results obtained from PNN classifier were compared with Support Vector Machine (SVM) classifier. From the statistical analysis, it was found that Coiflets 1 is the most suitable candidate among the wavelet families considered in this study for accurate classification of the EEG signals. In this work, we have attempted to improve the computing efficiency as it selects the most suitable wavelet function that can be used for EEG signal processing efficiently and accurately with lesser computational time. & 2011 Elsevier B.V. All rights reserved. 67 69 71 73 75 77 79 81 83 85 87 89
منابع مشابه
A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملAutomatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملEEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملFeature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 74 شماره
صفحات -
تاریخ انتشار 2011